宇宙的年龄到底有多大英文原文
——第一次凭借UVES和VLT看到宇宙时钟的示数

译:
Jack


概要:
    很多天文学家会有这样的想法:宇宙的年龄——自从宇宙大爆炸开始直到现在——是天文学界梦寐以求的东西之一。不管天文学家们为之付出了多少的努力,到现在,我们得到的有关这个基本数字的结果,也只是一大堆各式各样的数字,没有准确的答案。由于现在流行的宇宙学是从一大堆的理论性的猜测中发家的,而且,这些猜测也已经被不完整数据所扭曲,这样,使得对宇宙年龄的研究难上加难。最近估计出的160亿年这个数字被大多数人认为是最为接近的一个值。但是现在,一个由天文学家们组成的国际研究小组利用欧南台的甚大望远镜(以下简称VLT)高效的光谱摄制仪(以下简称UVES)来完成对宇宙年龄的探测,为以后的更为精确的测量铺平了道路。他们第一次测量了我们银河系形成时产生的某些恒星的放射性同位素铀-238的总量。这是我们对太阳系外的铀含量的第一次测试。其实,除了比考古学家要测的时间长得多外,这项工作与考古学上测量炭-14没有多大的差别。自从那颗恒星诞生起,“铀钟”就开始准确的走动,无论我们的银河系经过了多少不平凡的运动,铀钟仍然不受影响的走动着,直到现今。现在,它们应当已经走过了125亿年的历史了。显然,恒星的年龄是不可能大于宇宙的,所以,宇宙的年龄必然要大于那些恒星的年龄。事实上,由于天文观测的不准确性,关于宇宙年龄的数据仍然有25%或者说是±30亿年的上下浮动,但是,那些已经是次要的了。 造成这种原因的最主要的是,当前我们缺少有关基本的原子和核能的属性方面的知识。可是,实验室以后的工作会使得我们在这方面的有更多的了解,同样,它会使得我们对宇宙和恒星的年龄有一个更新的认识。我们离揭开宇宙的年龄之谜的日子已经不远了。这个结果已经与2001年2月8日在国际性的《自然》杂志上发表。


恒星中的重元素

    氢、氦、锂实在大爆炸中产生的,而那些重元素则是在恒星内部的核反应中形成的。恒星灭亡时,它的富含重元素的物质会被抛射到周围的空间中,这些元素则将和下一代恒星合成一体。事实上,组成你手上戴的金戒指的金子,是在一次恒星的爆发中产生,然后沉积在将形成太阳和它的行星的星际云中。

    因此,恒星越老,他所含的像铁和别的金属的重元素就少。观测的数据显示,球状星团中的老年恒星一般都是贫金属的,那些恒星的金属含量只不过是太阳金属含量的1/200。金属的质量只占那些恒星质量的2%,其余的元素则仍然是以氢和氦的形式存在。

银河系中的老恒星

    经过数十年毫无结果研究,最近,美国天文学家Timothy C. Beers和他的合作者开始对光谱进行检查。经过调查,他们发现,一些恒星的金属含量十分的少,以至于要比球状星团要低的多,在某些恒星上,金属含量只有我们太阳的1/10,000。很明显,那些金属含量很少的恒星实在银河系形成的的初级阶段——一个很重要,但是我们对之仍知之甚少的阶段——形成的。

    这些特殊的恒星告诉我们,那些行元素丰富的恒星,是在早期的进程中发射更多的光。为了研究这种趋势,一个从世界各地来的天文学家组成的研究小组将更为详细地研究这些恒星。因为这个浩大的工程,他们被授予使用ESO的VLT和VLT的高效、高分辨率的光谱摄制仪——UVES。他们已经进行了第一次观察,果然,在观察中,他们证明了这个新发现的真正价值。

有关放射性同位素的宇宙年代学

    要在独立的恒星进化过程中确定恒星的年龄的确并不是台难的,只要我们能看见恒星中半衰期足够长的元素,这些并不难办到。这些工作都依赖于在恒星中找到一个较为稳定的放射性同位素,然后测出它的丰度,我们就能确定宇宙的年龄。

    这种技术就象是在考古学上成功的运用了无数次的C-14检测时间技术。可以说,虽然已经过了成千上万年,但是依靠这种技术,仍能够测出那个被检测物经历的时间。在天文学上,这种技术当然是使用的,无非就是时间要比考古学上要长的多罢了。

    要进行这样的工作,选择一种正确的同位素是关键。与那些和放射性的元素同时形成的稳定元素相反,放射性元素(不稳定)的含量每时每刻都在减少。元素衰变的越快,那种同位素的含量就越少,那些稳定的同位素的含量也就越多,得到的最终结果——宇宙的年龄也就越精确。

    然而,如果要那些“钟”仍然有用的话,放射性元素的衰变不能太快——至少要在几十亿年我们测量的时候仍然有足够多(这样我们才能精确的测定宇宙的年龄)。

钍和铀的做成的宇宙时钟

    现在,留给我们做实验的只有Th-232(半衰期为140.5亿年)和U-238(半衰期为44.7亿年)了。根据Th-232的同位素的情况,他们为宇宙确定了几个年龄值。现今,我们可以用望远镜测到的最强的谱线,仅仅存在于少数特别明亮的恒星中,包括太阳。但是,由于它的衰变实在是太慢了,我们不可能用它来做高精度的测量。计算下来,要使Th-232衰变为原来的1/10的质量,要经过大约470亿年,而这470亿年中,有25%的误差,结果,我们的出的40~50亿年这个数值。大约是宇宙年龄的1/3。是的,这只钟似乎可以永无止尽的走下去,但是,它走得太慢了,我们没有办法精确地读出它上面的时间。

    相比之下,U-238是衰变的更快了,所以,如果用它来做宇宙的时钟的话,就要精确的多了。但,在常见的元素中,铀是最为稀少的一种了,在恒星的星光光谱中,铀的谱线往往很弱。所以,即使光是可见的,它也将掉入那些强光的汪洋大海中了。

    尽管如此,在那些很老的恒星中,重元素十分的少,于是我们就有了补救的办法。现在,研究小组通过VLT研究的恒星都是含金属元素很少的那种。在大多数如此的恒星中,常规元素只有太阳的1/1000,此时,分子、原子的谱线就大大的减弱了,而稀少的元素如铀的谱线便很容易找到,也就容易测量了。实在是运气,在产生大规模现在的恒星如太阳中含有的铁的超新星爆发中,铀幸存下来了。

在CS 31082-001中的铀的谱线


                    


    照片介绍:05a/01:它描述了在CS 31082-001周围的星区,星区的中心是一颗十二等星。那些十字形的叉丝石反射镜造成的。如果恒星相对来说较亮的话,在望远镜中就容易看到这种效果。


                 


    05b/01:这是一张有关老恒星CS 31082-001中的铀在385.96 nm的照片。在本区域中,其他的光谱(如铁和铷)的起因也已经标明了。他们也为那些广泛采用的稳定元素的丰度和恒星大气中的铀原子的四个不同的风度值估计并合成了光谱(细线)。显然,那些最主要的光谱(与完全没有铀的光谱对照)是不符合观测事实的。最为合适的光谱是中间的红线,利用这些光谱,我们可以知道,它的铀含量约为太阳的6%。

    当天文学家们检查他们计划观测的恒星——CS 31082-001的光谱时,激动得不得了。在这张光谱照片上,我们见过的重元素或者说是稀有元素的谱线是如此之多,可能已经是那一类恒星中最多的了。特别是在铁一类的重元素的丰度只有太阳的1/800的恒星中,重元素的光谱的暗线往往是不受铁那些元素的干扰的,而且,即使是在这样的一种贫金属星中,CH和CN的分子的谱线常常是很多的。

    在CS 31082-001的光谱重,我们可以看到14条以上的钍的光谱,而在平常的恒星中,我们充其量也只不过能看见两条这样的线。确实,在 CS 31082-001中含有不少的稀有的金属元素,可以说,那时天文学家们的一处宝藏。然而,最厉害的是,我们在近紫外区的389.59 nm的波长处,竟然发现了离子状的铀的光谱线(在照片05b/01的中部)!

    不奇怪,铀的光谱线很弱,毕竟铀是宇宙中较为稀少的一种元素之一,而且,在自从这恒星的诞生以来,铀的含量已经变为原来的1/8了。此外,在这些贫金属星中,接近紫外线的光谱线比较多。

    要精确的测量暗光谱,对射谱仪的敏锐度和分辨率还有它的效率都有很高的要求,对望远镜也是一个考验。而VLT和UVES在天文观测这方面可以说是一对绝妙的组合了,它可以得到相当暗的星(例如12等星,换句话说,就是比我们平时可见的星暗500倍的恒星)的星光光谱,而且,在拍摄出的那些星光光谱十分明亮,也只有那些以前那些裸眼可见的星光光谱的照片才能够与他相媲美。

CS 31082-001的年龄

    利用估算出的大气模型和人工光谱,科学家们做了一个细致的分析,他们发现,在这颗恒星的稳定的重元素的丰度的比率和太阳中的是十分相像的,只不过含量是太阳的12%罢了。


    测量同时也表明了钍和铀在CS 31082-001的丰度分别稍少于是太阳中的9%和6%,这两种元素和他们在周期表中的“邻居”们一样,都是铀相同的原子组成的,这就意味着,它们在CS 31082-001中衰变要远远长于在太阳中的衰变的时间。

    现在,由于在超新星爆发中形成的元素的模型不同,于是只能估计这颗恒星的年龄大约在110~160亿年之间。而现在被认为最为接近的数值为125亿年。

    宇宙的年龄当然要老于这颗恒星,自然是要比125亿年老。

    相信,不久更为确切的年龄应该就要出台了。

    如果U-238的衰变速度更快一点的话,我们对年龄的精确度就要高的多,估计,测出的年龄的精度应该在1.5 Gyr(一个Gyr为十亿年)左右。

    但是,在不久的将来,年龄的精度将不会仅仅依靠VLT拍摄下来的光谱了。目前,真正的问题是,我们依靠的那些有关铀并且要用它来确定年龄的实验室数据的不确定。另外,核物理中有关最初的同位素比率的计算带来了最大的误差。

    因此,在现有数据的基础上,改进物理的测量数据成了准确的读出宇宙时钟的当务之急。相应的实验室测量也正在法国的CEA和瑞典的Lund大学起步了。


    与此同时,这个研究小组正在寻找像CS 31082-001那样的恒星。可能现在,类似的恒星已经不多了,但是,铀能够在更多的范围中进行测量,我们也就能够知道在银河系中,那些恒星是否就像猜测中的那样是一样的老。

更多的信息

There may not be many, but if the uranium line can be seen and measured in more spectra, it will also become possible to judge whether those very old stars, as surmised(猜测), are all of about the same age, i.e. that of our Milky Way galaxy.
参见2001年2月8日出版的《自然》杂志。

 

  译自 ESO (http://www.eso.org/)

How Old is the Universe?
First Reading of a Basic Cosmic Chronometer with UVES and the VLT
Chinese Version


  SummaryMost astronomers would agree that the age of the Universe - the time elapsed since the "Big Bang" - is one of the "holy grails of cosmology".Despite great efforts during recent years, the various estimates of this basic number have resulted in rather diverse values. When derived from current cosmological models, it depends on a number of theoretical assumptions that are not very well constrained by the incomplete available observational data. At present, a value in the range of 10-16 billion years 
 They measured for the first time the amount of the radioactive isotope Uranium-238 in a star that was born when the Milky Way, the galaxy in which we live, was still forming. It is the first measurement ever of uranium outside the Solar System.This method works in a way similar to the well-known Carbon-14 dating in archaeology, but over much longer times. Ever since the star was born, the Uranium "clock" has ticked away over the eons, unaffected by the turbulent history of the Milky Way. It now reads 12.5 billion years. Since the star obviously cannot be older than the Universe, it means that the Universe must be older than that.Although the stated uncertainty is still about 25% or about ±3 billion years, this is only to a minor extent due to the astronomical observation. The main problem is the current absence of accurate knowledge of some of the basic atomic and nuclear properties of the elements involved. However, further laboratory work will greatly improve this situation and a more accurate value for the age of the star and implicitly, for the Universe, should therefore be forthcoming before long.This important result is reported in the international research journal Nature in the issue of February 8, 2001.PR Photo 05a/01: The 12.5-billion-year old star CS 31082-001.PR Photo 05b/01: The telltale spectral line in CS 31082-001 - the first detection of uranium outside the Solar System. 

Heavy elements in stars
  While hydrogen, helium and lithium were produced during the Big Bang, all heavier elements result from nuclear reactions in the interiors of stars. When stars die, heavy-element enriched matter is dispersed into surrounding space and will later be incorporated in the next generations of stars. In fact, the gold in the ring on your finger was produced in an exploding star and deposited in the interstellar cloud from which the Sun and its planets were later formed.

  Thus, the older a star is, the lower is generally its content of heavy elements like iron and other metals. Measurements have shown that old stars that are members of large agglomerations known as globular clusters are normally quite "metal-poor"- their metal-content ranges down to about 1/200 of that of the Sun, in which these metals constitute only 2% of the total mass, the rest being still in the form of hydrogen and helium.

Very old stars in the Milky Way galaxy
  After decades of mostly fruitless efforts, a large spectral survey by American astronomer Timothy C. Beers and his collaborators has recently uncovered hundreds of stars with much lower metal content than even the globular clusters, in some cases only 1/10,000 of the solar value. It is evident that these extremely metal-poor stars must have formed during the very infancy of the Milky Way, an important, but still poorly understood phase in the life of our galaxy.

  These particular stars exhibit a great variety of element abundances that may ultimately throw more light on the processes at work during this early period. As a step in this direction, an international team of astronomers [2] decided to study these stars in much more detail. They were awarded observing time for a Large Programme in 2000-2001 with the powerful combination of the ESO VLT and its very efficient high-dispersion spectrograph UVES. The first observations have been carried out and, not unexpectedly, have already proven to be a true gold mine of new information.
Cosmochronology with radioactive isotopes

  It is possible to make a fundamental determination of the age of a star that is quite independent of stellar evolution models, provided it contains a suitable long-lived radioactive isotope [3]. The use of a "radioactive chronometer" depends on the measurement of the abundance of the radioactive isotope, as compared to a stable one.

  This technique is analogous to the Carbon-14 dating method that has been so successful in archaeology over time spans of up to a few tens of thousands of years. In astronomy, however, this technique must obviously be applied to vastly longer time scales.

  For the method to work well, the right choice of radioactive isotope is very critical. Contrary to stable elements that formed at the same time, the abundance of a radioactive (unstable) isotope decreases all the time. The faster the decay, the less there will be left of the radioactive isotope after a certain time, the greater will be the abundance difference when compared to a stable isotope, and the more accurate is the resulting age.
Yet, for the clock to remain useful, the radioactive element must not decay too fast - there must still be enough left of it to allow an accurate measurement, even after several billion years.
Thorium and Uranium clocks

  This leaves only two possible isotopes for astronomical measurements, thorium (232Th or Thorium-232, with a half-life of 14.05 billion years [4]) and uranium (238U or Uranium-238, half-life 4.47 billion years).
Several age determinations have been made by means of the Thorium-232 isotope. Its strongest spectral line is measurable with current telescopes in a handful of comparatively bright stars, including the Sun. However, the decay is really too slow to provide sufficiently accurate time measurements. It takes around 47 billion years for this isotope to decay by a factor of 10, and with a typical measuring uncertainty of 25%, the resulting age uncertainty is about 4-5 billion years, or approx. one third of the age of the Universe. This slow-moving clock runs forever, but is hard to read accurately!

  The faster decay of Uranium-238 would make it a much more precise cosmic clock. However, because uranium is the rarest of all normal elements, its spectral lines in stars are always very weak; if visible at all, they normally drown entirely in a vast ocean of stronger spectral lines from more abundant elements.

  Nevertheless, this is exactly where the low abundance of heavier elements in very old stars comes to the rescue. In the stars that were studied by the present team at the VLT, with typically 1000 times less of the common elements than in the Sun, the predominance of the maze of atomic and molecular lines in the spectrum is greatly reduced. The lines of rare elements like uranium therefore stand a real chance of being measurable. This is particularly so, if for some reason uranium atoms were preferentially retained in the debris of those early supernova explosions that also created the iron-group elements we see in the stars today.
The uranium line in CS 31082-001

  ESO PR Photo 05a/01[Preview - JPEG: 337 x 400 pix - 32k][Normal - JPEG: 674 x 800 pix - 120k] Caption: PR Photo 05a/01 displays the Milky Way star field around CS 31082-001, the 12th-magnitude star at the centre. The "cross" is caused by reflections in the telescope optics, a typical effect for relatively bright stars. Technical information about this photo is available below.

  ESO PR Photo 05b/01[Preview - JPEG: 501 x 400 pix - 42k][Normal - JPEG: 1001 x 800 pix - 128k][Full-Res - JPEG: 1502 x 1200 pix - 200k] Caption: PR Photo 05b/01 The observed spectrum (dots) of the old star CS 31082-001 in the region of the uranium (U II) line at 385.96 nm. The origin of some of the other spectral lines in the region is also indicated (e.g. iron, neodymium). The synthetic spectrum (thin line) was computed for the adopted abundances of the stable elements and for four different values of the abundance (by number) of uranium atoms in the atmosphere of the star. The uppermost line (corresponding to no uranium at all) clearly does not fit the observed spectrum at all. The best fit is provided by the middle (red) line, representing a uranium abundance of approximately 6% of the solar value - see also the text. Technical information about this diagramme is available below.

  The excitement of the astronomers was great when they inspected the first spectrum of the 12th-magnitude programme star CS 31082-001! It showed what is probably the richest spectrum of rare, heavy elements ever seen. In particular, the faint lines of these elements were unusually free of interference from the lines of the iron-group elements which are indeed only 1/800 as abundant in this star as in the Sun, and by molecular lines (of CH and CN), often quite numerous even in such low-metallicity stars.
While only one or at most two thorium lines have ever been measured in any other stars, no less than 14 thorium lines are seen in the spectrum of CS 31082-001. Indeed, there is such a wealth of lines of other rare and precious metals that this spectrum is a real astronomers' treasure box. And best of all, the long sought-after line of singly ionized uranium is clearly detected at its rest wavelength of 389.59 nm in the near-ultraviolet region of the spectrum, cf. PR Photo 05b/01!

  Not surprisingly, the uranium line is still quite weak. After all, uranium is the rarest of elements to begin with and it has further decayed by a factor of eight since this star was born. Moreover, even in this low metal-abundance star, the near-UV spectrum remains rather rich in other lines.

  The accurate measurement of this faint spectral line therefore places extreme demands on the acuity (resolving power) and efficiency of the spectrograph and the light-gathering power of the telescope. The VLT and UVES have been built as the world-leading combination of these observational assets, and the spectra obtained of this comparatively faint star (magnitude 12, i.e. 500 times fainter than what can be seen with the unaided eye) are absolutely superb - indeed of a quality which until recently was reserved for naked-eye stars only. Despite its faintness, the uranium line can therefore be measured with very good accuracy.
The age of CS 31082-001

  A detailed analysis, using model atmospheres and synthetic spectrum calculations, shows that all the heaviest stable elements follow closely the abundance pattern seen in the Sun, but at a level of about 12% of the corresponding solar abundances [5].

  The measurements also show that the thorium and uranium abundances are somewhat lower than this - of the order of 9% and 6% of the solar values, respectively. Since these two elements were formed by the same atomic processes as their stable neighbours in the periodic table, this means that radioactive decay has progressed further in CS 31082-001 than in the Sun.
Different models of the element production in supernova explosions predict somewhat different production ratios between the stable and radioactive isotopes, leading to age estimates for this star in the range 11-16 billion years. The most likely age of CS 31082-001 is 12.5 billion years.
The Universe is older than the star, hence it must be older than 12.5 billion years.

Improved age determination soon possible
  Given the faster decay rate of Uranium-238, the measuring uncertainty for the stellar uranium line corresponds to an age uncertainty of only ±1.5 Gyr. This can be further reduced with even better spectra of CS 31082-001 and/or with the discovery and observation of other similar stars.

  However, for the immediate future, the accuracy of this age determination does not really depend on the VLT spectrum. For the time being, the real problems are the present uncertainties in the available laboratory data for uranium by means of which the measured line strengths are converted into element abundances. In addition, the nuclear-physics calculations of the initial isotope production ratios introduce errors that are larger than those of the spectral observation.

  Thus, improved measurements of those physical data are necessary in order to read more accurately the cosmic clock in CS 31082-001 from the existing observational data. The relevant laboratory measurements are now underway at the CEA, Saclay, France, and the University of Lund, Sweden. 
In the meantime, the team is trying to find other stars like CS 31082-001. There may not be many, but if the uranium line can be seen and measured in more spectra, it will also become possible to judge whether those very old stars, as surmised, are all of about the same age, i.e. that of our Milky Way galaxy.

More information
  The research described in this Press Release is reported in a research article ("Measurement of stellar age from uranium decay"), that appears in the international research journal Nature on Thursday, February 8, 2001.


Notes
[1]: 1 billion = 1,000 million.
[2]: The team members are: Roger Cayrel (P.I.), Francois Spite and Monique Spite (all Observatoire de Paris, France), Vanessa Hill and Francesca Primas (ESO), Johannes Andersen and Birgitta Nordstr?m (Copenhagen and Lund Observatories, Denmark and Sweden), Timothy C. Beers (Michigan State Univ., USA), Piercarlo Bonifacio and Paolo Molaro (Trieste, Italy), Bertrand Plez (Montpellier, France), and Beatriz Barbuy (Univ. of Sao Paulo, Brazil).
[3]: Isotopes of a natural element contain different numbers of neutrons in the nuclei, in addition to a certain number of protons that characterize that particular element. Some isotopes are "radioactive", i.e. with time they are transformed into other elements or isotopes. Other isotopes are stable over exceedingly long periods of time. Uranium-238 contains 92 protons and 146 neutrons.
[4]: The "half-life" of an isotope indicates the time after which half the atoms have decayed. After another time interval of this length has passed, only 25% of the original isotope is left, etc.
[5]: As the iron abundance in CS 31082-001 is only 0.12% (1/800) of that in the Sun, this means that, relative to iron and similar, lighter elements, the heaviest elements in that star are approximately 100 times "overabundant". Their spectral lines, again in relative terms, are correspondingly stronger - this is of crucial importance for the present, difficult measurements.

Technical information about the photos
  PR Photo 05a/01is reproduced from the STScI Digitized Sky Survey (? 1993, 1994, AURA, Inc. - All Rights Reserved) and based on blue-sensitive photographic data obtained using the UK Schmidt Telescope at Siding Spring (Australia). The comparatively empty sky field is located at high southern (-76°) galactic latitude and measures 7 x 7 arcmin2. PR Photo 05b/01 is reproduced from a spectrum of CS 31082-001, obtained in October 2000 with the UVES high-dispersion spectrograph at the VLT 8.2-m KUEYEN telescope at Paranal. The exposure lasted 4 hours, at a spectral resolution of approx. 75,000 and with a S/N-ratio of about 300. The lines are identified and three synthetic spectra, with different U-abundances, are drawn to illustrate the fit.

 

 From ESO (http://www.eso.org/)

▲ BACK